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We examine various perturbations of Jeffery-Hamel flows, the exact solutions of the 
Navier-Stokes equations governing the steady two-dimensional motions of an 
incompressible viscous fluid from a line source at  the intersection of two rigid plane 
walls. First a pitchfork bifurcation of the Jeffery-Hamel flows themselves is 
described by perturbation theory. This description is then used as a basis to 
investigate the spatial development of arbitrary small steady two-dimensional 
perturbations of a Jeffery-Hamel flow ; both linear and weakly nonlinear per- 
turbations are treated for plane and nearly plane walls. It is found that there is 
strong interaction of the disturbances up- and downstream if the angle between the 
planes exceeds a critical value 2a2, which depends on the value of the Reynolds 
number. Finally, the problem of linear temporal stability of Jeffery-Hamel flows is 
broached and again the importance of specifying conditions up- and downstream is 
revealed. All these results are used to interpret the development of flow along a 
channel with walls of small curvature. Fraenkel’s (1962) approximation of channel 
flow locally by Jeffery-Hamel flows is supported with the added proviso that the 
angle between the two walls a t  each station is less than 2a2. 

1. Introduction 
Jeffery-Hamel flows are a family of exact solutions of the Navier-Stokes equations 

for steady two-dimensional flow of an incompressible viscous fluid from a line source 
a t  the intersection of two rigid planes. Although they were discovered over seventy 
years ago by Jeffery (1915) and Hamel (1916), and have been described in many 
textbooks, they are not widely understood. This is surely because, depending on two 
dimensionless parameters, there is a multiplicity of solutions with a richer structure 
than most other similarity solutions. 

They are also more important than merely one family in the mathematical 
menagerie of exact solutions of the Navier-Stokes equations because they may be 
generalized and used in a variety of contexts. In  particular, they may be used to 
approximate locally the steady flow in a two-dimensional channel with walls of small 
curvature (Fraenkel 1962). To see this, consider steady flow along a channel in the 
(x, 2)-plane which has walls with equations 2 = f(x) and z = -g(x). Suppose that there 
is a given steady flux Q in the positive x-direction. Now the equations of the walls 
may be equivalently expressed as 0 = a(x) and 0 = -p(x), where tanct(x) =f’(x), 
tanP(x) = g’(x), and 8 is defined as the angle the tangent to  a wall at the station x 
makes with the positive x-axis. Then it can be seen in figure 1 that the channel is 
locally like the configuration of a Jeffery-Hamel flow if ct and p vary slowly, i.e. if the 
curvature of the walls is small. Watson (Fraenkel 1963, p. 407) noted that this local 
approximation holds whether the channel is symmetric, and so p(x) = ~ ( x )  for all x, 
or not. Recently Sobey & Drazin (1986) have not only used JefferyLHamel flows to 
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FIGURE 1. (a) Sketch of configuration of Jeffery-Hamel flow. (b )  Sketch of two-dimensional channel 
approximated locally a t  station r by configuration of Jeffery-Hamel flow. 

describe channel flow but also simplified the presentation of Jeffery-Hamel flows by 
use of bifurcation diagrams and suggested that each flow with radial velocity 
distribution of both signs is unstable. This led them to question the validity of using 
Jeffery-Hamel flows to approximate flow in a channel with walls of small curvature 
wherever there is no appropriate Jeffery-Hamel flow with radial velocity of only one 
sign. 

Although we assume that the curvature of the walls is small, we in general do not 
assume that the angles a and /3 are small. This is in contrast to several papers by 
Eagles and co-authors (see, e.g., Georgiou & Eagles 1985), who have exploited the use 
of parallel flow as a first approximation to elucidate Jeffery-Hamel flows, channel 
flows and their instabilities. However, Allmen & Eagles (1984) solved an interesting 
partial-differential eigenvalue problem in a finite wedge of given non-zero angle ; they 
calculated some forced linear modes of given frequency to compare with results of 
spatially growing modes in a slowly diverging channel. 

In  this paper we shall study various small perturbations of Jeffery-Hamel flows in 
detail. First we study steady perturbations to find the spatial growth of small 
disturbances. Perturbations among the Jeffery-Hamel flows themselves are given in 
32. A pitchfork bifurcation is analysed. At the same time the apparatus of operator 
theory is built to solve that and subsequent problems. Small steady perturbations of 
Jeffery-Hamel flows which are not of the Jeffery-Hamel similarity form are treated 
in 83. The linearized problem is soluble by use of normal modes, the variables being 
separable so that an ordinary differential eigenvalue problem arises. The special case 
of this problem for zero Reynolds number was solved by Lugt & Schwiderski (1965) 
and interpreted by Sternberg & Koiter (1958). We solve also another special case, the 
one that marks the marginal stability of the spatially growing steady modes. This 
special case is then used in 94 as a first approximation for the weakly nonlinear 
spatial growth of steady modes in a channel with walls of small curvature. The 
problem of linear temporal stability of Jeffery-Hamel flows is broached in $5, and i t  
is shown that boundary conditions at infinity and at the line source affect the 
stability characteristics. 



Perturbations of Jeffery-Hamel flow 56 1 

2. Jeffery-Hamel flows and their bifurcations 

kinematic viscosity v satisfies the vorticity equation, 
The stream function I+? of two-dimensional flow of an incompressible fluid of 

( 2 . l a )  

where the Laplacian in cylindrical polar coordinates is V2 = a2/ar2+i3/rar+ 
a2/r2ae2.  We shall suppose that the flow is driven by a given steady volume flux Q 
between the two rigid walls with equations 8 = fa. Then the boundary conditions 
of no slip and impermeability are 

@=-J-+Q, - = 0  alC. a t B = + a .  (2.1 b )  

First we shall consider steady Jeffery-Hamel (called JH hereinafter) flows with 
stream function $ ( r ,  6 )  = iQG(y ,  a, R ) ,  where R = Q / 2 v  is the Reynolds number and 
y = e/a.  The system ( 2 . 1 )  becomes 

ae 

G,,,, + 4a2G,, + 2aRG, G,, = 0 ( 2 . 2 a )  

and G = + l ,  G , = 0  a t y = + l .  (2 .2b )  

Jeffery (1915)  and Hamel (1916) themselves showed that solutions of the problem 
(2 .2 )  may be expressed explicitly in terms of Jacobian elliptic functions. Since then JH 
flows have become well known through the work of many authors. All such flows 
have been classified by Fraenkel (1962) into types I, II,, III,, IV, or V, for n = 1, 
2 ,  . . . . A few cases are especially simple and useful. Plane Poiseuille flow arises for 
solutions of types I and 111, as a --f 0 for fixed R.  Stokes flow arises for solutions of 
types I, 11, and HI,, with 

sin 2 a y  - 2 a y  cos 2a 
as R+O 

G(y'  a' R,  + sin 201 - 201 cos 2 a  

for fixed OL (which is not a root of tan2a = 201). All solutions intermediate between 
types 11,, 11,, IV, and V, are given by Fraenkel (1962)  on what he called boundary 
g2 with equation a = a2(R),  where az is expressed in simple terms of complete elliptic 
integrals. 

Sobey & Drazin (1986)  recognized that a subcritical pitchfork bifurcation of the 
J H  solutions occurs on the boundary a,. To examine the nature of this bifurcation 
by the use of perturbation theory, define y, = O/a, and E = a-a, so that (2 .2 )  
becomes 

G'" + 4 4  G" + 2az  RGG" = 0 ( 2 . 3 a )  

and (2 .3b )  

where a prime denotes differentiation with respect to yz. Then expand 

G = G , + & G ~ + ~ G ~ + ~ ~ G ~ + . . .  as E + O  (2 .4 )  

for fixed R, and substitute the expansion into ( 2 . 3 ) .  First we equate coefficients of 
terms in eo and find 

G: + 4 4  Gz + 2az  RG; GS = 0 ( 2 . 5 ~ )  

and Go = fl, G; = 0 a t  y2 = + 1 .  (2 .5b )  
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This gives the JH  solution Go on boundary W,, which marks the bifurcation of 
solutions of types 11,, 11,, IV, and V,. The solution Go, representing a symmetric flow, 
is an odd function of y,, and is also such that Gg = 0 a t  y, = f 1. 

Next we equate coefficients of & in (2.3) and find 

LG; = 0 ( 2 . 6 ~ )  

and BGi = 0, (2.6b) 

where we define the linear operators L and B so that 

LU = uiV + 4 4  U” + 2a, R(Gk u‘)’ 

BU = [u( - l) ,  ~ ( l ) ,  u’( - l ) ,  u’(l)IT 

(2.7) 

(2.8) and 

for all functions U E S ,  and 

S = {ul 

Now LG; = 0 (a result which does not depend on the special value of a,) and 
BG; = 0 (a result which does), so the general solution of (2.6) is 

G+ = aGh ( 2 . 6 ~ )  

for an arbitrary constant a. We shall evaluate a later when solving the problem for 

It is convenient now to digress, in order to prepare to solve a few inhomogeneous 

(uiV)2dy2 < a}. 

G;. 

linear problems of the form 

LU = h’, Bu = [b,, b,, b,, b41T (2.9) 

for given functions h(y,) and constants b,, b,, b,, b,. Fraenkel (1963, $5) derived such 
problems in a closely related context and showed how to solve them. It helps first to 
define an inner product by 

(2.10) 
1 

(u, v) = I-, uvdy,, 

so that the generalized Lagrange identity, 

(Lu, v) - (u, Lw) = [I(% v)]’l 

I (u ,  V )  = U~~~W-U”W’+U’V’’-UV’~~+ (44+2a,RGh) (U’W-UW’). 

(2.11) 

follows for all u, w E S  on integration by parts, where I is defined by 

(2.12) 

The Lagrange 
the solution u 

i.e. 

identity for v = G; gives the solvability condition for the existence of 
of ( 2 . 9 ) ,  

(h’, Gh) = [I(u, Qh)ll,, 

JI1C;hdy, = (b4-b3)Gr(1) ,  (2.13) 

on integration by parts and use of the boundary conditions satisfied by u and 
Gh. Further, LZL = (Mu’)’, where M is the linear differential operator defined by 
Mw = v”+ (4ai+201,RG~)w for all u, W E S .  Now MGg = 0 and 
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so if condition (2.13) is satisfied we may solve (2.9) (in terms of quadratures) by 
variation of parameters, although in practice it is usually easier to find u by direct 
numerical integration of (2.9). Here ends the digression. 

Next we equate coefficients of E in (2.3) and find 

LG, = - a2u2 R{ (G:)2}’ ( 2 . 1 4 ~ )  

and BG, = 0. (2.14b) 
The solvability condition (2.13) for (2.14) is ‘automatically’ satisfied because Go is an 
odd function of y2. Therefore there is a solution of the form 

G, = a2F,, ( 2 . 1 4 ~ )  

where Fl is defined as the unique odd solution of the problem 

Wl = - u2R{ (G:)’}’ (2.15a) 

and BF, = 0. (2.15b) 

The particular integral +!7: of (2.15a) and the known complementary function may 
be used to give Fl by quadratures and thence in explicit terms of Jacobian elliptic 
functions, but we have found it easier to obtain Fl by numerical integration of the 
system (2.15). Details are given later in this section. 

LG; = - 2a3a, R(G: F;)’ ( 2 . 1 6 ~ )  

and BG; = - [O,O,Gr(-1) ,  -Gr(l)]”.  (2.16b) 

Now the solvability condition (2.13) for system (2.16) gives 

Coefficients of $ in problem (2.3) give 

a 

a2 

i.e. 

-a3u2 R 11, F;(G,”)2 dy, = a{Gr( 1)}2 
9 

a2 

(2.17) 
a; R J  F;(G,”),dy, 

-1 

I t  may be recognized that the non-zero roots f a  of (2.17) give the asymmetric JH 
solutions G of types IV, and V, for small E .  We anticipate that the integral in the 
denominator is positive for all R because the asymmetric solutions are known to be 
real only for a < a2, i.e. for E < 0. Thus formally ei and a are purely imaginary but 
the product &a, and therefore G, are real. For R = 0, so that u2 = in, we find that 
Go = y+n-l sinny and so, for 0 < R + 1,  F, = -&R (sin2ny+2 sinny) and from 
(2.17) we obtain a2 - -96/(xR2) as R+O. Numerical integration of (2.5) and (2.15) 
has been carried out and we find that, for example, if R = 20 and u = u, then 
a’ = - 13.080. 

The root a = 0 of (2.17) gives the symmetric J H  solutions of types 11, and 11, 
as s+O.  In this case G,+i(y2) = 0 for m = 0,1,  ... and Gl(y2) = 0 for all y,. Therefore 
we need to proceed further to find the leading term which modifies the J H  solution 
for small E ,  i.e. to find G,. Accordingly, equate coefficients of e2 in (2.3) for the case 
a = 0 to find 

LG, = 0 (2.18a) 

and (2.18b) BG, = - (2a3-l[0,0, G[( - l ) ,  G r (  1)IT. 



564 W .  H .  H .  Banks, P. G. Draxin and M .  B. Zaturska 

The solvability condition for (2.18) is satisfied because Go is an odd function. Again, 
we may regard the odd solution G, as known in terms of quadratures or by direct 
numerical integration. 

3. Spatially developing steady modes 
Here we shall describe steady small perturbations of a Jeffery-Hamel flow, 

showing how they develop up- and downstream. This will lead to consideration of 
boundary-value problems with the domain of flow -a < 0 < a, rl d r < r2.  
Accordingly, take a JH solution as the basic flow, substitute $ = ;&(G+6$’) into 
(2.1), and linearize the system for small perturbations to find 

and $‘ = 0, y = o  ae a t B = f a  

(3 . la )  

( 3 . l b )  

in the limit as the parameter 6+ 0. It can be seen that we may separate the variables 
to solve this linearized system, taking ‘normal modes’ of the form 

&,,,, + a2{h2 + ( A  - 212) $,, + a 4 ~ 2 ( ~  - 2)2$ 

-aR(h-2)G,($,,+a2h2$)+aRhG,,, $+2aRGyy&, = 0 (3.3a) 

and $ = O ,  $ , = O  a t y = f l .  (3.3b) 

The eigenvalue problem (3.3) may be solved directly by a numerical method such as 
‘shooting’ to determine h and $ in terms of a and R because the functions G are 
known. However, we may solve the problem analytically in two special cases of 
importance. 

3.1. The case R = 0 
The problem (3.1) when R = 0 is well known (after Dean & Montagnon 1949), 
because it reduces to the solution of the biharmonic equation and represents 
problems of plane elasticity as yell as Stokes flow in a wedge. The eigensolutions may 
be of two types according as $ is an even or odd eigenfunction. 

(i) Even eigenfunctions : 
cos ahy cos a(h - 2) y 

&(y) = x- cosa(h-2) ’ (3.4a) 

where h is a zero of V (  - A )  and V is defined by 

V ( p )  = ( p  + 1)  sin 2a + sin 2a(p + 1) for all p .  (3.4b) 

We denote this family of eigenvalues by 1, where i = f 1,  +2 ,  . .. ; positive subscripts 
will denote eigenvalues whose real parts are greater than or equal to g, and negative 
subscripts for those less than or equal to t .  
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(ii) Odd eigenfunctions 

where h is a zero of W 

sin ahy sin a(h - 2)y 
Ilrkd = h cosah-(h-2) cosa(h-2)'  

- A )  and W is defined by 

(3 .5a)  

W @ )  = ( p  + 1) sin 2a- sin 2a(p + 1 )  for all p .  (3.5b) 

This family of eigenvalues is denoted by mi where i = f 1, f 2 ,  . . . ; the use of positive 
and negative subscripts is as above. 

The properties of the two infinite countable sequences, li and m,, of the real and 
complex-conjugate eigenvalues as real a varies have been discussed by Lugt & 
Schwiderski (1965). In  particular, note that V (  - p )  = - V ( p - 2 )  and W (  - p )  = 
- W ( p  - 2 )  for all p so that lLi = 2 - l i  and m-( = 2 -mi .  In  fact I-, < 0 if and only 
if a < 90" and m-, < 0 if and only if a < 128.7". 

Sternberg & Koiter (1958), Lugt & Schwiderski (1965) and Moffatt & Duffy (1980) 
have discussed various biharmonic problems in wedges relevant to the present 
problem. Their work shows that if conditions are imposed on $' a t  arcs r = rl and 
r = r ,  as well as the walls 0 = f a then $' may become large for fixed r as rl + 0 or 
r ,  + co if a > 90". This may be described as the invalidity of St. Venant's principle 
in the context of elasticity or as spatial instability, in the sense that a small steady 
disturbance at r = rl may grow as r increases, or a disturbance a t  r = r2  may grow 
as r decreases. 

3.2. The general case 
We anticipate the similar occurrence of families of even and odd eigenfunctions $- for 
basic symmetric JH flows of types I, 11, and 111, with R =+ 0, families which reduce 
to (3 .4a)  and ( 3 . 5 ~ )  when R = 0, although the technical difficulties of solving the 
problem are greater for R =t= 0 than R = 0. Thus there is a set of even eigenfunctions 
with eigenvalues h = li and of odd eigenfunctions with eigenvalues h = mi for each 
value of R, although in general Li + 2-1, and m-, =I= 2-m, when R =+ 0. We 
conjecture that 1, > 2 and I-, < 0 if and only if a < a,(R) and that m, > 2 and 
m-, < 0 if and only if a < a,(R), where a2 and a3 give the boundaries @, and g3 of 
Fraenkel(l962). Indeed, we identify a2(0) = 90" and a3(0) = 128.7" in the biharmonic 
problem, and shall provide numerical and analytical results which are circumstantial 
evidence to support this conjecture. Further, following Moffatt & Duffy (1980, p. 
311), we suggest that there is spatial instability of steady modes as r +  co if h > 0. 
This implies that  the JH flows of types I, 11, and 111, are spatially stable but those 
of 11,, 111,, 11,, ... are unstable. 

There are two complete sets of eigenfunctions $' so that the perturbation may 
be independently specified for -a < 0 < a a t  both r = r1 and r = r2 ,  subject to 
conservation of mass. It seems that the set belonging to the eigenvalues 1-, and m-, 
is needed to represent the spatial growth of disturbances as r increases from rl and 
the set belonging to 1, and mi to represent the growth as r decreases frpm r = r,. It so 
happens that the &dependence of the two sets of eigenfunctions &/r(y) is the same 
when R = 0, but different when R > 0. 

3.3. The case a z a2 
When a = a,(R) two solutions of the eigenvalue problem (3.3) may be seen by 

(3 .6a)  
inspection : 

$=Goy,  h=O 

and 4 =Goy ,  h = 2. (3.6b) 
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These eigenvalues, valid for all R, can be identified with the first eigenvalues 1-, and 
El respectively for the special case R = 0. These solutions may be perturbed for small 
E = a-a2 by first replacing y by y, in problem (3.3) so that it becomes 

-~ t~R(h-2)G($”+4h~$)+a,RhG$+2a,RG$‘  = 0 ( 3 . 7 ~ )  

and $ = O ,  v=O a t y , = +  1 + -  ( 2 (3.7b) 

without approximation, where a prime denotes differentiation with respect to y,. 
Now we have found that, for J H  flows of types 11, and TI,, 

G = G0+c2G,+ ... as E + O  ( 3 . 8 ~ )  

for fixed R, where G, is specified by problem (2.18), so we expand 

h = ho+ehl+e2h,+ ... (3.8b) 

( 3 . 8 ~ )  and 

and proceed to equate coefficients of successive powers of E in (3.7). 

$@2? E ,  R)  = $O(Y2> R)  + “l(Y2, R) + “2$2(yz, R) + * * * as E +  0,  

The coefficients of EO give 

$.lbv +a;{h; + ( A ,  - 2)2} $; +a; hi(h0 - 2)2$0 

-a2 R ( h o - 2 ) G ~ ( $ ~ + a ~ h ~ ~ o ) + a 2 R h o G ~ $ o + 2 a , R G ~ $ ~  = 0 ( 3 . 9 ~ )  

and B$o = 0. (3.9b) 

TWO solutions of this problem are given in (3.6). We take $o = (2; and A, = 0, A, = 2 
in turn. 

Case (a )  A, = 0 

value of A, we adopt the notation A, = A?). 
This solution joins up with the most rapidly growing solution when R = 0. For this 

The coefficients of E give 
L$l = 4h1°) G r  ( 3 . 1 0 ~ )  

and B$, = 01,’[0,0, Gr(  - l),  - G r ( l ) l T .  (3.10 b) 

The solvability condition (2.13) for (3.10) leads to 

(3.11) 

Note that hio) > 0, so that h increases through zero as a increases through a,, and the 
symmetric JH flows are spatially unstable for a > a2 and stable for a < a2. (Here we 
follow Fraenkel’s 1962, p. 122 convention that a 2 0.) 

We have already seen that when R = 0, a2 = $IT and Go = y + r 1  sinxy; then, 
(3.11) leads to hio) = 47c-’. For the general case, however, Fraenkel (1962) showed 
that 9?12 may be expressed parametrically by 

a2 = (l-Bm);K(m), R = 6 ( 1 - 2 m ) - ~ { E ( m ) - ( l - m ) K ( m ) }  
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for 0 < m c t ,  where X is the complete elliptic integral of the first kind and E of the 
second kind with parameter m ;  and that 

where sn is the Jacobian elliptic function. It follows a t  length from (3.11) that 

15m2( 1 -m) ,K3(m)  
4ai[m(l  +m)K(m)-2(1-m+m2){K(m)-E(m)}]‘  

= 

We may recover the result for R = 0 from this by letting m+O; in addition we 
obtain 

A f “ = c , R 3 + ~ 2 R + O ( R - 1 )  as R + m ,  

where c, = 5{E(i)- iK($)}-4/6912 = 0.02247 and c2 = 42K($){E( i ) -$K($)}  = 0.7411. 
We have numerically integrated (2 .5)  for Go on g2 for R = 20 and R = 30 and find 

the values 194.65 and 628.88 respectively for A!,) from (3.11). If we assume A:,) = 
d, R3 + d,R then these two values of A$,) a t  R = 20 and 30 give rise to d, = 0.02246 and 
d, = 0.7486. We have also checked the form of (3.11) by numerically solving (3.3) to 
find h for two pairs of values of a, R close to 9?, and evaluating A!,) from an assumed 
quadratic form of A in 8. 

For solutions G of types IV, and V, the calculation of A, is a little different because 
G; $: 0. However, we show by a simple argument in the next section that, with the 
notation A, = AY), A!,) = - 2 A y ) ,  and therefore 

(3.12) 
J (G,”)2d~z 

-1 

for these asymmetric JH flows near the pitchfork bifurcation B,. Therefore they are 
spatially unstable for 8 < 0. The result (3.12) has also been checked numerically in 
the same way as was ( 3 . 1 1 ) .  

Case ( b )  A, = 2 

A, = 2. From equation ( 3 . 9 ~ )  we obtain 
We next consider the perturbation about the eigensolution corresponding to 

L,$, = 0, ( 3 . 1 3 ~ )  

where we define the linear differential operator L, as 

d4 d2 
L - 7 + 4 a + + 2 a 2  R 
- dY2 dY; 

Also, (3.9b) is 

The solution of this problem is $, = Gh, as anticipated. 

B$, = 0.  

The coefficients of E in equation ( 3 . 7 ~ )  with the notation A, = AiZ) give 

L, = - 4 a ~ A ~ 2 ’ { G ~ - ~ 2 R ( G ~ ) 2 }  

B$l = ail[O, 0, G f (  - l ) ,  -Gf(1) lT .  
and in (3.7 b) give 

(3.13 b )  

( 3 . 1 4 ~ )  

(3.14b) 
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The generalized Lagrange identity for the operator L, is 

uLi v dy, + [12(u, u ) ] ! ~ ,  

where 
d2 d 

CL, 7- 201, RG;I ~ 

d4 
L; = - + 4  

dY: dY2 dY2 

(3.15) 

(3.16) 

and 12(u, V )  = u"'v-u"v'~u'v' ' -uv~~'+~cL~(u'v-uv')  +2a2 R G ~ u v .  (3.17) 

Because the operator L, is not self-adjoint we need to use the solution $t of the 
adjoint problem 

Ll$t = 0 ( 3 . 1 8 ~ )  

and B$" = 0;  (3.18b) 

this solution is not known explicitly, but we note that $t, like $o, is an even 
function. 

The solvability condition for (3.14) gives 

Gr(1) $+"(l) 
ri = (3.19) 

2ai J {Gr -a2 R(G;),} $tdy, 
-1 

because Go is an odd function and ++ an even function. 
We have integrated the system for Go and $" numerically for R = 20, a = a, and 

find that (3.19) leads to A?) = - 144.83. This has been checked in the same way as the 
analogous result when A, = 0. 

We also note that if R = 0 then a, = ~ I C  and $t = 1 + cos ICY. This in turn leads to 

In  addition to the numerical results referred to above we found some sample 
eigenvalues by numerically integrating the eigenproblem specified by systems (2.2) 
and (3.3). As infithe previous numerical work we used the 'shooting' method (with 
normalization $"(-1) = 1)  to obtain solutions and, to start the tabulation of A(a) 
for a given R, we related the calculation to the eigensolution a t  R = 0 to ensure 
confidence in identifying the appropriate eigenvalue. As will be appreciated, because 
it is a two-parameter (a ,  R) problem, a complete tabulation is not feasible. It will be 
convenient to recall the eigenvalue investigations of Lugt & Schwiderski (1965) and 
of Moffatt & Du@y (1980) for the special case R = 0 where the eigepvalqes gre 
determined f rop  tcigQnove$ric eqN&ioqs, snd we have encapsulpted their results in 

ure 2. Bpcguse V ( - p )  = 7 V ( p - 3 )  itqd W ( - y )  = -W(p-4) (see (3.4) and (3.5)) 
re i s  symmetry about the line where the ordinate equals one. 

It was decided to determine the effect on both 1, and 1-, by changing to a small 
positive value of R, and we chose 0.3. To explain this choice of R, and indeed to help 
with the interpretation of the numerical results for R > 0, it is important to recall 
some properties of the J H  flow. To this end we show, by way of an (R,a)-plane 
diagram in figure 3, the important boundaries which demarcate the various flow 
types. The latter figure is based on results from Fraenkel (1962) and Buitrago (1983). 
To appreciate the implications of figure 3 note that we have introduced a state 
variable, ( = 1 -exp {G(O)}-', and give in figure 4 a perspective view of the principal 
solution sheets representing symmetric JH solutions for a > 0, R > 0. Figure 5 
contains sketches of sections of the sheets a t  R = 1.6, 0.3 and -0.5. We have 
labelled the sheets in figures 4 and 5 to make it easier to distinguish and visualize the 

Ac;L' = -44R-1. 
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FIGURE 2. Eigenvalues for R = 0 from Lugt & Schwiderski (1965). -, Real eigenvalues 1, of 
antisymmetric modes; . . . . , real eigenvalues m, of symmetric modes ; ---- , real part of 
eigenvalues 1, of antisymmetric modes ; -. - .-, real part of eigenvalues m, of symmetric modes ; 0, 
point of zero skin-friction in Stokes solution (i.e. a,(O)) ; 6, singular point of Stokes solution (i.e. 
%(O) ). 

a 

- 5  0 5 10 
R 

FIGURE 3. Boundaries corresponding to special properties of the Jeffery-Hamel solutions (after 
Fraenkel 1962 and Buitrago 1983). Note that G (  - 1 )  = 0 on B2 and B-l ; (i3G/i3a)-' = 0 on B3, 

and B6;  and G(0) = G (  - 1 )  = 0 on B4 and 
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E 

FIGURE 4. Perspective sketch of two parts of the solution sheets of symmetric Jeffery-Hamel flows : 
a region near the cusp and a region with tl small. (6 = l-exp{G(O)}-l.) 

nature of the sheets in the neighbourhood of the cusp a t  a FZ 2.2, R x 1.4. TO 
understand this cusp it may help to look at figure 4 and think of the cusp that arises 
from the projection of the vertical tangent planes to a surface in catastrophe 
theory. 

The eigenvalues, 1+,, for R = 0.3 are given in figure 6 and the points representing 
the boundaries delineated in figure 3 are marked accordingly. We note that for this 
value of R, the two branches I, and I - ,  which were separate when R = 0, now join 
near a = 2 although for 1, and 1-, lying between approximately a and $ the JH flow 
is of type 11,. The tabulation of both 1, and I-, was continued from a = 2 with 
decreasing a until the loci of 1, and 1-, versus a develop vertical tangents and, 
presumably, merged into I, and I+, and also spawned complex eigenvalues - this is 
similar to the behaviour when R = 0. Even with this modest value of the Reynolds 
number the change in the eigenvalue pattern is relatively large. However, for the first 
eigenvalues emanating from the a = x region there is no joining of the 1, and 1-, 
branches for a > 2.1. We did not continue far with the tabulation of 1, and 1-, after 
‘reflection ’ from the W, boundary because the JH flow was developing large shears 
(of order 300). 

The effect on 1, and 1-, of further increasing R was also investigated. We chose a 
value R = 1.6 which is large enough to avoid the cusp in the boundary W 3  (see figure 
3). We note again the joining of the two branches 1, and 1-, in the vicinity of u = 1.5 
and also the very large changes from the R = 0 pattern. The symmetry that exists 
for R = 0 is destroyed for R > 0. We have tabulated the I-, branch of eigenvalues 
that emanates from the region of u = IT and have displayed the results in figure 6 over 
the range 1 < a < 3. However, the calculation of the 1, branch proved to be difficult 
and time-consuming and we obtained very little information. 
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5 ” (4 

- a  

FIGURE 5. Sheet sections of the simpler Jeffery-Hamel solutions a t  (a)  R = 1.6, ( b )  0.3 and (c) -0.3. 
(5 = 1 -exp {G(O)}-l.) Note : these are sketches - certain aspects have been exaggerated. 
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FIGURE 6. Real eigenvalues corresponding to the antisymmetric modes for R = 0.3 and 1.6 (cf. 
figure 2). The point,s marked @ indicate a,(@ and those marked 0 indicate a,(R). 
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4. Steady flow in a channel: weakly nonlinear perturbation of 
Jeffery-Hamel flows 
We described in $ 2 Jeffery-Hamel flows and their asymptotic behaviour near their 

pitchfork bifurcation. Our results may be summarized by the formulae. 

(4.1) 

(4.2) 

(4.3) 
a3A3 
- a2 

and 0 = eSA+-+o(e6) as S,e+O, 

where we here define 6 (not uniquely of course) to be of the magnitude of the 
perturbation of the JH stream function a t  the bifurcation B2 so that 11.’ is of order 
one as 6-0. Note that a2 < 0 so that we interpret (4.3) as giving 6 = ]el: and A = 0 
or A = * A ,  for a < 0, where A ,  = ( -a2);. Thus the symmetric J H  flows of types 
11, and 11, come from the root A = 0 as E + O  and the asymmetric flows of types 
IV, and V, come from the roots A = + A ,  as a 1‘0. 

We described in $ 3  the steady spatial linear modes of JH  flows. Those of our results 
relevant to the perturbation of a J H  flow near the pitchfork bifurcation may be 
summarized by (4.1) and (4.2), where here (4.3) is replaced by 

dA 
dr 6r-=aeh~o)6A+o(a6A) ase+O (4.4) 

because we found that A oc rA and h - chi0) as e + 0, and by (4.1) with 

$’ - r2BGh (4.5) 

and 6r- = ~ h ~ ~ ’ 6 R + o ( d B )  as a + O  (4.6) 
d B  
dr  

because we found that B K rA  and h - 2 + ehi2) as a --f 0. 
In  this section we shall combine the efTects of the weakly nonlinear perturbation 

of J H  flows and of their linear spatial perturbation near the bifurcation a t  g2 and 
add the effects of small curvature of the walls, i.e. we shall synthesize and generalize 
the perturbation theories of $92 and 3 to describe steady flows along a channel. At 
the simplest, a combination of the effects gives (4.1) and (4.2), where A satisfies the 
Landau-like equation 

(4.7) - _  - k ,  A + k ,  A 3 ,  dA 
dP 

and we define p = 62 In r ,  k ,  = ehio)/S2 and k2 = hp) / (  -a2 ) .  It can be seen that (4.7) 
reduces to (4.3) or (4.4) in the appropriate special case. We may also anticipate a 
similar Landau-like equation for B, but there may be interactions between the two 
modes, and indeed with other modes for which we have no convenient analytical 
solutions. 

However, we may reach (4.7), and its analogue for B, more rationally. We seek the 
distinguished limit whereby 8, e and the magnitude of the small wall-curvature are 
related so that the effects of weak nonlinearity, weak spatial growth and small 
curvature are of the same order of magnitude. The arguments above suggest that we 
use the method of multiple scales with the ‘slow’ radial coordinate p as well as the 
‘fast’ one r .  Thus we take the equation of the walls to be 0 = fa,{i + S 2 h + ( p ) }  - for 
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given functions h,  and replace ra/ar by d / a r + r ( a p / & )  a/ap = ra/ar+S%/ap in (2.1). 
Then (2.1) and (41) lead to 

and 

where V’ = az/ar2 + a/r  ar + a2 / r2  a02 is the Laplacian expressed in terms of the fast 
variable r .  We may expand 

~‘ = $o+S$l+62$z+. . .  as S+O (4.9) 

where $o(r,Y2) = A(P)G~(Yz)+R(P)r’G~(Yz). (4.10) 

This takes into account not only the self-interaction of each component but also their 
mutual interaction. We find A ,  R, $,, $2, . . . by the methods of $0 2 and 3. The results 
as well as the methods are similar, for we find at  length that A satisifies a Landau 
equation of the form (4.7), where 

(4.11) {Qb”(W2{h+(p) +h-(p)} 
k,(P) = 

4 4  SI, (G;;)2dY2 

R [-lF;(G,”)2dYz 

2% I-, (G,“)2dY2 ’ 

1 

and k, = 1 (4.12) 

If h,  = €/(a2 S2) then we recover the results of $02 and 3 with k, = sh$0)/S2 in (4.7). 
We saw that the solution A = +A,, where A, = ( -  k l / k 2 ) i  for 6 < 0 gave the 
asymmetric JH  flows of types IV, and V, as 6 1‘ 0. Linearizing (4.7) about its solution 
A = A, we find 

so that A -A, cc exp ( - 2eA$O)p/S2) = r-2cny’. This shows that the spatial growth of 
normal modes of the asymmetric J H  flows is of the opposite sign and twice the 
magnitude of the growth of modes of the symmetric J H  flows, as anticipated in 
(3.12). 

Equation (4.7) also describes the development of a disturbance in a channel with 
walls 0 z f cr,(R) provided that El is chosen to represent the linear growth of the least 
stable spatial mode. Equation (4.7) has the general solution given by 

AP2(p) = - 2 k ,  exp -2 kl(p’) dp‘ exp 2 k l ( p ” )  dp” dp’, { s” il {.r I 
but i t  is perhaps more helpful to use its qualitative behaviour to indicate how A 
increases or decreases. Suppose, for example, we take a slowly diverging channel such 
that k , ( p )  < 0 upstream of the critical station pa, where h+(po) + h-(p,) = 0, k,(p,)  = 0 
and k l ( p )  > 0 for p > pol in order to approximate the channels used for the numerical 

19-2 
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solutions of the Navier-Stokes equations by Cliffe & Greenfield (1982) and Sobey & 
Drazin (1986). Then (4.7) shows that if the disturbance, and thence A ,  is specified 
upstream of the critical station then A decreases for p < po but increases for p > po 
superexponentially until it becomes infinite. (Of course, (4.7) would become invalid 
before A became infinite.) There is a paradox here, as first suggested by Sobey & 
Drazin, because the numerical solutions of the Navier-Stokes equations give 
equilibration of disturbances downstream of the critical station as if the constant 
k ,  in (4.12) were negative. However, i t  seems that the flow downstream of the critical 
station as calculated numerically is not close to a local JH solution, so perhaps A 
begins to grow for p > po in accord with (4.7) but soon becomes large, so that (4.7) 
becomes invalid, and thereafter the flow approaches a new equilibrium not 
approximated locally by any JH flow. 

We find also that B satisfies 

where 

dB - = k,B+k4A2B, 
dP 

(Gi F, + F;)’$+ dy, 

{a2 R(Gh), - GIJ’} $+dy, 
, 

(4.13) 

(4.14) 

(4.15) 

Fl is defined by (2 .15)  and F, satisfies 

L, F2 = - 201, R(Gh GIJ‘)’, (4.16a) 

BF2 = 0. (4.16b) 

If h,  = e / (azP)  we recover the results of $ 3  with k,  = ehY)/cS2 in (4.13). 

5. The temporal stability of Jeffery-Hamel flow 
We shall next examine the linear stability of a JH flow to two-dimensional 

disturbances. We write $ = aQ(Q+ SY) and linearize (2 .1)  for small perturbations. 
Therefore 

(5.1 a )  
V 1 y ~ + ” ( V 2 y ’ ) r - y Y b l y l ; - 2 R G l y y  RG RG - v4y’ 

a3r3 a2r4 0 - ar 

and P = O ,  F O = O  a t B = + a  (5.1 b )  

after scaling the time variable. Using the method of normal modes, take Y ( r ,  8 ,  t, a, 
R) = est Y( r ,  8, a, R). Therefore 

(5 .2a)  

and 
A A 

Y=O, Y 6 = 0  a tB=_+a.  (5 .2b)  
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5.1. The case R = 0 
It is instructive to put R = 0 in ( 5 . 2 ~ )  so that 

(5 .3a)  

= - Y*V4 Y r  dr dB 

= - llD 1V2 q 2 r  dr  do, 

on use of Gauss’s divergence theorem, provided that there is no contribution from 
the ‘boundaries’ at r = 0 , ~ .  Here D is the domain of flow { ( r ,  6) ( 0  < r < 00, 
-a < 6 < a} and Y* is the complex conjugate of Y. Therefore s < 0 and we may 

rescale r ,  = r( -8); so that ( 5 . 3 ~ )  becomes 

v.l, 3 = -vZ, @, (5 .3b)  

where VZ, = a2/ar2, + a / r ,  ar, + az/rZ, 86’. From the system (5.3 b )  and (5.2 b )  we note 
that either all negative s are eigenvalues or there is no eigenvalue. I n  short, it seems 
that the Stokes flow is stable, although the eigenvalue problem is degenerate. 

However, the boundary conditions a t  r = 0, co deserve closer attention in the light 
of the above paragraph and of our discussion of the case R = 0 in $ 3 .  To be specific, 
add the boundary conditions 

,. * 

!P= 0, Yr = 0 a t  r = r1 , r2  (5 .3c)  

to ( 5 . 2 b ) ,  to pose the eigenvalue problem ( 5 . 3 a ) ,  (5 .26 )  and ( 5 . 3 ~ )  to determine s. 
Dimensional analysis leads to 

for some function P, which may arise as a sequence of eigenvalues. We may define 
a new radial coordinate r / r 2  or equivalently just take r2 = 1.  Then the problem is 

VF = PVZY in D, (5 .4a)  

and = O  onaD, 
a Y  F=o, - 
an 

(5 .4b )  

where D, = {(r,6)Irl 6 r 6 1, -a  < 6 < a} is the domain of flow and aD, its 
boundary. The usual variational formulation gives 

P = - m i n  2 , (5.5) 
$ E H  tJ 

where H is the space of well-behaved functions satisfying (5.4b) and 

I1 = JJD* (V2$)2rdrd/3, I ,  = (V$)2rdrd6. SS,. 
We may use the Rayleigh-Ritz method to calculate P or simply estimate the first 
mode with a single trial function. To the latter end we take a separable form 
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c t y l  0.1 0.5 0.9 

0.5 -122.366 -99.6775 -3877.28 

1.0 -34.0908 - 134.632 -3930.79 

2.0 -40.8323 - 152.581 - 3944.40 

3.0 -46.5893 - 156.483 - 3946.93 

TABLE 1. Upper bounds as estimates of P by use of the trial functions f(r) = 1 + cos {n( 2r - 1 - rl)/ 
(1 - r J }  and g(0) = 1 + cos (nola) in (5.5)-(5.7) for various values of ct and r1 

$ = f ( r )  g(0) for such an estimate, where f ( r l )  = f’(r,) = f (  1) = f ’ (  1) = 0 and g(a )  = 
g ’ (a )  = g( -a) = g’( -a) = 0. (We note that the separable form is appropriate in the 
limits as a + 0, rl + 1 - we return to this point briefly in 96.) With this form for $ 
we find 

(5.7) 

In  the special case when a is small, further progress is possible; we find that 

where 0 = ay. Consider now the further limit rl + 1.  We find that 

in that order. It 
extremal is given 

can be shown by the calculus 
by g(0) = 1 +cos xy so that 

of variations that the required 

r l +  1. 

Numerical evaluations of the integrals in (5.6) and (5.7) using the trial functions 
f ( r )  = 1 + cos(x(2r- 1 --r1)/(l -rl)} and g(0) = 1 + cos ( x 0 / a )  gives the values for P 
shown in table 1.  With a = lop4, rl = 0.99 we find by numerical integration that 
a2P = - 9.96. We have also repeated the analysis and numerical evaluation of I 1  and 
I 2  withf(r) = ( r -  l ) 2 ( r - r l ) z  and g(0) = (a2-02),,  the results of which show the same 
general trends. 
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5 .2 .  The general case 
The case above not only is of some intrinsic interest but also indicates how to use the 
boundary conditions when R > 0. So, although there is always stability when R = 0, 
the solution of this case sheds a little light on the nature of the instability and on how 
the instability depends on conditions near and far from the line source when 12 > 0. 
Indeed, if s $. 0 then we may rescale r* = r(sli in (5 .2 )  and deduce that either all 
magnitudes of s give eigenvalues or none do. If s = 0 then we may revert to  the 
treatment of small steady perturbations of a Jeffery-Hamel flow. 

5.3. The case a % a, 

Equations (3.6) give two solutions of problem (5 .2) ,  namely 

Y =Goy, s = 0, 01 = a,(R) (5.8a) 
1 

and Y = r2Goy, s = 0, 01 = a,(R), (5.8b) 

for all R. Thus s = 0 is a t  least a double eigenvalue. For the reasons outlined in the 
previous paragraph, it appears fruitless to perturb this eigenvalue without 
specifying the boundary conditions for small and large r .  

6. Conclusions 
The linear and weakly nonlinear theories of the preceding sections suggest various 

physical results. Fraenkel (1962, p. 133, 1963, 1973) recognized and proved that the 
approximation to steady flow along a channel with walls of small curvature by 
symmetric Jeffery-Hamel flows locally is valid where a(x) < a,(R). We have shown, 
however, that his assumption of symmetric flow is invalid in practice, because small 
asymmetric steady disturbances of a symmetric Jeffery-Hamel flow grow spatially 
unless a: < a,(R). So re-application of Fraenkel’s arguments implies that  the local 
approximation is valid only if a(x) < a,(R) everywhere. We have also gone a little 
further, showing heuristically in $4 that if a(x) does not exceed a,(R) either by too 
much or for too far downstream then weakly nonlinear asymmetric disturbances 
may grow but will ultimately decay downstream where a(x)  < a,(R). 

This conclusion was based on our interpretation of the linear spatial stability in $3,  
Taking a steady perturbation yY of the stream function of a basic Jeffery-Hamel flow 
as a mode such that cc rh, we deemed the eigenvalues h > 0 as spatially unstable 
as r --f 00, the perturbation growing downstream and dominat#ing the basic flow there. 
I n  addition we interpreted the eigenvalues that decreased below 2 as unstable as 
r + 0 ; the intuitive justification of this is less clear, although it may be noted that the 
pressure perturbation p’ cc so that p’+  00 as r+O if h < 2.  However, these 
arguments are no more than plausible, and the strongest support for our 
interpretation comes from the extensive analysis of the case R = 0 in the literature. 

Sternberg & Koiter (1958) posed and solved a boundary-value problem modelling 
the plane elastic deformation of a wedge, which happens to be the complete analogy 
of a problem of Stokes flow. They used a Mellin transform, obtaining the eigenvalue 
problem (3.3) for the special case R = 0, and solved the boundary-value problem 
explicitly. They interpreted their results as the breakdown of St. Venant’s principle 
when a > in, because then a small local perturbation of the solution near r = 0 
influences, and is influenced by, the solution for large r .  Moffatt & Duffy (1980) solved 
a similar boundary-value problem to model Stokes flow in a wedge and indicated the 
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analogous interpretation of perturbations of Jeffery-Hamel flows, although like 
Fraenkel (1962, 1963) they confined their attention to symmetric perturbations. The 
result that flow far upstream interacts with flow far downstream in a channel if 
a > $ is, of course, intuitive, because a Jeffery-Hamel flow is clearly not a locally 
valid approximation if a wall bends backwards where its tangent is parallel to the 
z-axis (see figure 1 ) .  

We have recognized that in = a,(O) and that h = 0 , 2  are eigenvalues of the 
problem (3.3) if a = a,(@ for all R. So we have generalized the interpretation of the 
significance of the values 0 , 2  of h and of the breakdown of the local approximation 
where a(x)  > -az(R), although we have not solved any specific boundary-value 
problem for R > 0 because the Mellin transformation is no longer helpful. This is the 
essence of our heuristic argument to conjecture the significance of the angle a,(R). 

The following problem may help to focus the issue. Suppose that $ satisfies the 
vorticity equation (2.1 a )  and boundary conditions 

$-=-+iQ, $ B = O  a t B = + a  f o r r , < r < r ,  

$ = +Q{ - 1 + ST, Ui(S)  do} a t  r = ri for --a < 19 < a,  and 

where Ii, and U ,  are given function such that 

Ui(0)dB = 2 for i = 1,2.  1, 
We conjecture that the solution in general approaches the appropriate Jeffery-Hamel 
solution for fixed r > 0 in the limit as both rl --f 0 and r2 --f 00 if a < a,(R) but not, in 
general, if -a > a,(R). This conjecture is in part based on the above arguments and in 
part on Brady's (1984) numerical results for an analogous problem of steady flow 
which is driven by suction through the parallel porous walls of a two-dimensional 
channel. We hope to publish more about this point soon. 

Then what is the nature and explanation of flow in a channel when a ( x )  > a,(R) 
for some substantial distance downstream 2 We have the analysis and discussion 
above together with laboratory experiments (Cherdron, Durst & Whitelaw 1978 ; 
Sobey 1985; Sobey & Drazin 1986, etc.) and numerical experiments (Cliffe & 
Greenfield 1982 and Sobey & Drazin 1986) to help us answer this question. It is clear 
that the flow becomes asymmetric and there are regions of closed streamlines. The 
occurrence of closed streamlines may precede or succeed symmetry breaking of 
steady flow as R increases, but both arise a t  approximately the same value of R if the 
walls have small curvaturc. This, then, is an important case study of breakaway, 
which may occur at any value of H according to  the shape of the channel. There is 
no local symmetric Jeffery-Hamel flow to approach in regions where a > a,, so it 
seems that there is a strong interaction of the flow in the whole length of the channel 
where a(x)  > a,(R) and the flow in this length must be determined as a whole. If 
a(x) < cr,(R) far downstream then the flow will revert to the local symmetric 
Jeffery-Hamel flow of type I or 11, there. Of course, if R is large enough for a 
given channel with distribution a(x)  then time-periodic, quasi-periodic, chaotic, or 
turbulent flow may arise. 

The analogy of the theory of stability of plane parallel flows and the present theory 
of the stability of Jeffery-Hamel flows should be noted. Problem (3.3) is the analogue 
of the Orr-Sommerfield problem for steady spatially growing modes. However, the 
analogy does not seem to  open up a vista of results analogous to all the results of the 
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Orr-Sommerfeld and Rayleigh stability problems, because the technical difficulties 
associated with polar coordinates are much more severe than those with Cartesian 
coordinates; in particular, we have not been able to find modes by separating the 
variables of time or the Cartesian coordinate perpendicular to the plane of flow, 
let alone find an analogue of Squire’s theorem to show that two-dimensional 
disturbances are the most unstable. Nevertheless, it  seems promising to use ( 3 . 3 ~ 4 )  
with velocity profiles other than those of Jeffery-Hamel flows in order to find 
approximately the spatial development of unsteady modes, just as the Orr- 
Sommerfeld equation is used with profiles of flows that are not exact solutions of the 
Navier-Stokes equations. Indeed, the spatial stability of diverging flows such as 
two-dimensional jets may be profitably studied by using both the Orr-Sommerfeld 
equation and ( 3 . 3 a ) ;  the former is suitable for jets that are nearly parallel and the 
latter for jets that are nearly radial, whereas real jets are intermediate between 
parallel and radial ones. Also, perturbations of the flow in a diverging channel may 
be better approximated by choosing G so that the local radial velocity is @G,/(ar) 
in order to use ( 3 . 3 )  to estimate the local spatial decay of steady modes. 

We next relate our results to those for parallel flows, considering flows in the 
domain D, of $ 5 .  I n  that limit as a+O for fixed rl = 0 and r2 < GO, Jeffery-Hamel 
flows of types I and III, become locally parallel a t  each station, with velocity 
u = i(1- y 2 ) / r  between the boundaries a t  x = f L,  where L = ar, z = Or and 
y = O/a = z/L. If a < 1 -rl < 1 then the flow is uniformly parallel in the domain D, 
because L z a is constant for rl < r < 1.  Thus we anticipate that the stability 
characteristics of JH  flows may be found in the limit as a+0 by use of a local 
approximation of plane Poiseuille flow and in the limit as a and ( l - r l ) / a + O  by a 
global approximation of plane Poiseuille flow. 

Now steady small perturbation of plane Poiseuille flow can be represented in 
terms of spatial modes proportional to eikz for complex wavenumbers k,  where Im k 
gives the relative decay of disturbances as x increases. The wavenumbers may be 
found as eigenvalues of the Orr-Sommerfeld problem for steady modes (cf. Bramley 
& Dennis 1982). On identifying x with r in the limit as a and (1  -rl)/a+O we may 
understand, as follows, why the J H  spatial modes give Rel+i,  Rem,,+fco as 
a + 0 (see e.g. figure 2 for the case R = 0). The spatial modes ofthe JH Froblem are 
proportional to r’ = eAlnr - e””” as a + 0. Although no single mode of the J H  flow is 
identified with a single mode of the parallel flow, each mode of the J H  flow is 
identifiable with some superposition of the spatial modes of the parallel flow, and vice 
versa, as a + 0. Therefore li, mi --f & co as a + 0 and i + f GO in order that eikx may be 
equal to a sum of modes proportional to exp (li lnx) and exp (mi lnx). 

Also the temporal modes of plane Poiseuille flow are proportional to eik(*-ct) fo r 
complex eigenvalues c found in terms of real wavenumbers k by solving the 
Orr-Sommerfeld problem. It can be shown that 

where Q/L is the velocity scale and the dimensionless velocities I$‘) and c t )  are real 
and may be found in simple terms of the solution of a transcendental equation, 
for n = 0,1 ,2 ,  ... (cf. Drazin & Reid 1981, pp. 159-160). In  fact @(k) 2 @(O) = 
f(n + 2)27c2, so that the least-damped mode has relative growth rate 
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This value is in dimensional terms. It gives s = -n2/a2 as in $ 5  if we scale s with the 
factor v and take r l  % r2 = 1 .  

In summary, our results, especially those of $5 ,  and those quoted suggest that the 
stability of the steady symmetric basic flow in a wedge is as follows. (a )  If a-a,@) 
is negative and not small then the basic flow is a JH flow, it is stable, and the 
conditions a t  r = rl, r2  are only of local significance. ( 6 )  If a z a,(R) then the basic flow 
is at  least approximately a JH flow, and it may be stable or unstable according to 
the precise boundary conditions a t  r = r l ,  r2.  ( c )  If a - a , ( R )  is positive and not small 
then the basic flow is not a JH flow, it is unstable, and the conditions a t  r = r1 , r2  
determine the flow throughout the wedge, whereby an asymmetric flow may 
develop. 

Finally, it  should be remembered that real flows may be unsteady or three- 
dimensional, whereas the results discussed in this paper are for two-dimensional flows 
which are mostly steady. The possibility of time-periodic flows and knowledge of the 
well-known subcritical Hopf bifurcation of plane Poiseuille flow a t  R = 3848 suggest 
that there may be a curve go, on which a = a,(&), say, in the (a ,  R)-plane of figure 
3 a t  which Hopf bifurcations occur. (Note that plane Poiseuille flow arises as a 
limiting case, a = 0, of Jeffery-Hamel flows, and that with our definition of R based 
on volume flux the maximum of a parabolic velocity distribution is g. )  We speculate 
that this curve rises leftwards from the point R = 3848 on the R-axis and crosses the 
curve &?, ; thus the first instability as R increases is a t  a Hopf bifurcation if the value 
of a is less than that a t  the intersection of B2 and go. So we might add to the above 
paragraph: (d )  Notwithstanding (a)-(c),  as a increases for fixed R an oscillatory 
instability develops when a = ao(R) if R is so small that a,(R) < a , (R) .  One 
implication of these ideas is especially important : if a diverging channel with plane 
walls has semi-angle a > 4.71213848 rad z 0.07" then the flow may become unstable 
because of the divergence before the flow can become unstable owing to the usual 
Tollmien-Schlichting mechanism of extracting energy from the basic flow a t  the 
critical layer. (Note that a,(R) - 4.7121R as R+ 00 along B2.) Thus the mechanism 
described by the Orr-Sommerfeld equation may be superseded by the mechanism of 
instability, which is essentially a rotati9n (corresponding to a 0-shift as exemplified 
by the eigensolution ( 3 . 6 ~ )  viz. h = 0, $ = Gou) of the distorted basic Jeffery-Hamel 
flow, described in this paper if a ,> 0.07'. If tJhe channel converges, i.e. a < 0, then 
the mechanism described in this paper is a stabilizing one, so that only the 
Tollmien-Schlichting mechanism may lead to instability for such values of a. 

The laboratory experiments of Sobey (1985) and Sobey & Drazin (1986) show that 
three-dimensional flow arises from weak side effects at  all values of R and from 
strong instabilities at critical values, although the flow in a wide channel is usually 
approximately two-dimensional near the centre of the channel a t  moderate values of 
R. Therefore the mathematical results of this paper are relevant to real flows, but in 
applying them the possibility of three-dimensional side effects and instabilities as 
well as two-dimensional wave instabilities must be borne in mind. 
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